As many as 60% of patients with sepsis and septic shock manifest a corticosteroid response that is apparently insufficient, given their severity of illness [16]. Untreated, sepsis progresses to hypoperfusion, hypoxia, and dysfunction at the level of cells, tissues, and organ systems, leading to death in at least 30% of cases [1]. https://www.hhs.gov/sites/default/files/pmtf-final-report-2019-05-23.pdf, Yang, H., Haldeman, S., Lu, M., & Baker, D. (2018). Pain severity scales that allow for pain assessment using various physical features representative of pain include the Behavioral Pain Scale (BPS) and the Critical Care Pain Observation Tool (CPOT). With local infections, TLR activation leads to microbial clearance or, if overwhelmed, necrosis and apoptosis of parenchymal cells. https://www.cdc.gov/shingles/vaccination.html, Dahlhamer, J., Lucas, J., Zelaya, C., Nahin, R., Mackey, S., DeBar, L., Kerns, R., Von Korff, M., Porter, L., & Helmick, C. (2018). The role of opioid use in patients with PHN is controversial (Ignatavicius & Workman, 2015). The best-known human PRR are the ubiquitous toll-like receptors (TLR), a highly diversified family of cell surface and cytoplasmic receptors for an extraordinary number of microbial invaders and endogenous danger signals. Risk factors and prevention. In addition, different causes lead to different injury patterns, which require different management. Renal parenchymal cells express TLR, which may be directly activated by endotoxin. Sepsis-induced ileus likely contributes to a cycle of hypomotility, inflammatory cell recruitment and activation, and production of ROS and inflammatory cytokines. These injuries involve perforations from high-velocity projectiles, can occur with minimal initial discomfort, and present for … Since these processes result in DAMP release they are in themselves immunogenic [3]. Unlike acute pain, chronic pain is not protective, and the onset is gradual. It is more resistant to medical treatment than acute pain, as it does not always respond to interventions. The severity of the response depends on both host and pathogen characteristics and the relevant underlying pathophysiology arises principally from interactions between an infectious agent and the host’s innate immune system. Recovery of organ failures, where possible, is largely accomplished by reversal of the underlying insult and associated host inflammatory response. The coagulant response to an infectious insult is initiated by increased amounts of circulating tissue factor, which results from endothelial permeability as well as haematogenous spread of necrotic debris. This book presents a comprehensive overview of recent clinical techniques and findings regarding wounds in burns, infections of wounds, and wound management in general. A care bundle approach for prevention of ventilator-associated pneumonia. New definitions include worsening of oxygenation as a major criteria for differentiating VAP from other respiratory tract infections. Recent Member Activity Bruten brygga - Gunnar Myrdal och Sveriges ekonomiska efterkrigspolitik 194 Van Dale Middelgroot woordenboek Zweeds-Nederlands Microcirculatory dysfunction is among the postulated mechanisms. Other potential causative factors include blood-brain barrier disruption, CNS inflammation, complement activation, increased production of nitric oxide and other vasoactive substances, neurotransmitter dysregulation, and leukocyte recruitment. Airway colonization, ventilator-associated tracheobronchitis (VAT), and hospital-acquired (HAP) and ventilator-associated pneumonia (VAP) are three manifestations having the presence of micro-organisms in airways in common. Some of the most common types of neuropathic pain conditions include postherpetic neuralgia (PHN), trigeminal neuralgia (TN), diabetic neuropathy, and phantom limb pain, which are outlined below (Ignatavicius & Workman, 2015). Neuropathic pain typically responds to adjuvant drugs such as antidepressants, anticonvulsants, antispasmodic agents, and skeletal muscle relaxants, which will be discussed among other pain treatments in a separate module. Role of Translocation of Pathogen-Associated Molecular Patterns in Sepsis. Pain is always subjective and described as an individual experience for each patient. Special consideration should be given to the older adult population when assessing for pain. It usually affects one side of the face near the jaw or cheek, and the intensity of the pain is so severe that it can be physically and mentally debilitating. Critical Care Medicine, 29(7), 1303–10.Find this resource: 2. van der Poll T, and Opal SM. VAP develops when micro-organisms present in distal lung tissue (alveoli) overwhelm host defences with its virulence and burden. Phantom limb pain is felt after the loss of a body part and is most commonly described as stabbing, shooting, burning, and throbbing pain. Flynn A, Chokkalingam Mani B, and Mather PJ. The bestselling First Aid Manual covers all aspects of first aid - it is the ideal first aid book for you and your family. Keep it handy; it could be a life-saver. Previous edition ISBN 9781409342007 â Early antibiotic therapy is responsible for decrease in VAP incidence, but facilitates selection of multidrug-resistant organism. Annane D, Maxime V, Ibrahim F, Alvarez JC, Abe E, and Boudou P. (2006). Map of referred visceral pain [image]. (2010). Wikimedia. Animal models created to fill this knowledge gap have largely relied upon mechanisms—such as ischaemia/reperfusion and drug toxicity—that are probably only indirectly relevant. Current medical diagnosis and treatment 2020. More recent work has identified features of both hyperinflammation and immunosuppression in sepsis [4]. The risk for PHN increases with age, and hyperalgesia and allodynia following the resolution of the skin rash are among the most prominent clinical manifestations. Diagnosis and treatment of the condition are equally complex, but management usually includes pharmacological medications such as anticonvulsants and tricyclic antidepressants. 3-Part Module Series on Pain Management. https://www.niddk.nih.gov/health-information/diabetes/overview/preventing-problems/nerve-damage-diabetic-neuropathies/all-content, National Institute of Neurological Disorders and Stroke. Somatic pain may be further subdivided into cutaneous or superficial (skin and subcutaneous tissues) and deep somatic (bone, musculoskeletal, blood vessels, and connective tissues). While rates are similar for males and females, the underlying causes often differ. Some questions to ask include: The patient's medical and surgical history, in addition to prior trauma or injuries, should be evaluated. All non-vertebrate organisms—pathogenic, non-pathogenic, or commensal—express microbial-associated molecular patterns (MAMPs) [2]. The author—a noted expert in the field—presents, in this book, the fundamental physics and physiology related to the field, along with some of the recent applications, all in one place, in such a way as to enable and enrich both ... Although they have diverged in humans and other vertebrates, in invertebrate species, inflammation and coagulation are performed by a single cell type, the haemocyte, reflecting an evolutionary precursor [5]. The nurse or APRN should assess the patient's history with prior or current pain relief measures, including pharmacological and non-pharmacological modalities. 115.1 Organ colonization time-evolution during ICU stay. These foci of pneumonia are predominantly distributed in lower lobes and dependent zones of the lungs. The purpose of this module is to describe the pathophysiology of pain, reviewing the different types of pain, and outlining the clinical assessment and work-up for a patient presenting with pain, as a means to enhance the nurse and APRN’s understanding of pain and the vital components of a comprehensive pain assessment. Classically, four routes have been described; nevertheless, micro-aspiration of secretions from upper airways remains as the most important source, representing almost 90% of all cases. Garrabou G, Moren C, Lopez S, et al. As many as 70% of patients with severe sepsis develop encephalopathy, which is associated with worsened outcomes [15]. Clinics in Chest Medicine, 20, 671â9.Find this resource: 11. Exogenous ways of colonization represent approximately <5% of all routs [2,4,6,7]. Describes the experiences of a newcomer to the Yukon when he attempts to hike through the snow to reach a mining claim. Translocation of gut flora and/or PAMPs may explain the delayed appearance of sepsis among some ICU patients, in whom progressive organ dysfunction includes deterioration of the gut mucosal protective barrier. Attention should be paid to nonverbal indicators of pain as part of the pain assessment in these patients, such as facial expressions, body movements, grimacing, guarding, and behavioral changes. Critical Care Medicine, 36, S198–203.Find this resource: 11. The link was not copied. TN, or tic douloureux, is a type of chronic pain that affects the fifth cranial nerve, inducing excruciating, shock-like burning pain to the face. Allodynia or hyperalgesia may be present, as an exaggerated response to stimuli. Airway colonization, ventilator-associated tracheobronchitis (VAT), and hospital-acquired (HAP) and ventilator-associated pneumonia (VAP) are three manifestations having the presence of micro-organisms in airways in common. © Oxford University Press, 2021. A few examples of visceral pain include colitis, pancreatitis, bladder spasms, and appendicitis (Ignatavicius & Workman, 2015). Acute pain is a warning sign or protective response that something in the body has been damaged, notifying the individual to respond to or escape the painful stimuli. https://commons.wikimedia.org/wiki/File:Sketch_colored_final.png, Ignatavicius, D. D., & Workman, L. (2015). (2011). (2002). Journal of the American Medical Association, 302, 2323â9.Find this resource: 6. Fibromyalgia is a poorly understood chronic pain condition that affects about 4 million adults in the US. American Thoracic Society and Infectious Diseases Society of America. ◆ Abnormalities in macrovascular, microvascular, endothelial, and mitochondrial function all contribute to the haemodynamic changes and organ failures seen in septic patients. Facial expressions (grimacing, wrinkled forehead, wincing), body movements (restlessness, pacing, guarding), and audible expressions (crying, wincing, moaning) can all indicate the presence of pain. Pain severity scales for individuals who have difficulty communicating verbally, such as older adults with cognitive impairments and dementia, include the FACES Pain Scale (displayed in Figure 3), the Adult Non-Verbal Pain Scale (NVPS), and the Pain Assessment in Advanced Dementia Scale (PAINAD). The diagnosis of CIRCI is complicated in part by the lack of an assay for corticosteroid activity at the level of the target tissue. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Medicine Online for personal use (for details see Privacy Policy and Legal Notice). Clinical Professor, Division of Critical Care, The University of British Columbia Faculty of Medicine, Professor of Critical Care Medicine, Medicine, Health Policy & Management and Clinical & Translational Science,, University of Pittsburgh School of Medicine and Graduate School of Public Health, Professor of Critical Care, University of Sydney, Professor in Anesthesiology and Intensive Care Medicine, University of Milan, Professor of Intensive Care Medicine, University College London, Section 1 ICU organization and management, Part 4.10 Acute respiratory distress syndrome, Part 4.12 Respiratory acidosis and alkalosis, Chapter 116 Diagnosis and management of community-acquired pneumonia, Chapter 117 Diagnosis and management of nosocomial pneumonia, Chapter 118 Diagnosis and management of atypical pneumonia, Part 4.14 Atelectasis and sputum retention, Section 10 The metabolic and endocrine systems, Section 12 The skin and connective tissue, Section 19 General surgical and obstetric intensive care, Section 21 Recovery from critical illness, PRINTED FROM OXFORD MEDICINE ONLINE (www.oxfordmedicine.com).Â, Clinical Cytogenetics and Molecular Genetics, Anesthesiology: A Problem-Based Learning Approach, The European Society of Cardiology Textbooks, International Perspectives in Philosophy and Psychiatry, Oxford Specialty Training: Basic Sciences, Oxford Specialty Training: Revision Texts, Oxford Specialty Training: Revision Notes, Section 1 ICU organization and management, Chapter 3 Rapid response teams for the critically ill, Chapter 4 In-hospital transfer of the critically ill, Chapter 5 Pre- and inter-hospital transport of the critically ill and injured, Chapter 6 Regional critical care delivery systems, Chapter 7 Integration of information technology in the ICU, Chapter 8 Multiple casualties and disaster response in critical care, Chapter 9 Management of pandemic critical illness, Chapter 10 Effective teamwork in the ICU, Chapter 11 Communication with patients and families in the ICU, Chapter 12 Telemedicine in critical care, Chapter 13 Clinical skills in critical care, Chapter 14 Simulation training for critical care, Chapter 17 Policies, bundles, and protocols in critical care, Chapter 18 Managing biohazards and environmental safety, Chapter 19 Managing ICU staff welfare, morale, and burnout, Chapter 20 ICU admission and discharge criteria, Chapter 21 Resource management and budgeting in critical care, Chapter 22 Costs and cost-effectiveness in critical care, Chapter 23 Evidence-based practice in critical care, Part 1.7 Medico-legal and ethical issues, Chapter 27 Medico-legal liability in critical care, Part 1.8 Critical illness risk prediction, Chapter 28 The role and limitations of scoring systems, Chapter 29 Severity of illness scoring systems, Chapter 31 Genetic and molecular expression patterns in critical illness, Chapter 33 Bronchodilators in critical illness, Chapter 34 Vasopressors in critical illness, Chapter 35 Vasodilators in critical illness, Chapter 36 Inotropic agents in critical illness, Chapter 37 Anti-anginal agents in critical illness, Chapter 38 Anti-arrhythmics in critical illness, Chapter 39 Pulmonary vasodilators in critical illness, Chapter 40 Gastrointestinal motility drugs in critical illness, Chapter 41 Stress ulcer prophylaxis and treatment drugs in critical illness, Chapter 42 Sedatives and anti-anxiety agents in critical illness, Chapter 43 Analgesics in critical illness, Chapter 44 Antidepressants in critical illness, Chapter 45 Antiseizure agents in critical illness, Chapter 46 Inhalational anaesthetic agents in critical illness, Chapter 47 Muscle relaxants in critical illness, Chapter 48 Neuroprotective agents in critical illness, Chapter 49 Hormone therapies in critical illness, Chapter 50 Insulin and oral anti-hyperglycaemic agents in critical illness, Chapter 51 Anticoagulants and antithrombotics in critical illness, Chapter 52 Haemostatic agents in critical illness, Part 2.7 Antimicrobial and immunological drugs, Chapter 53 Antimicrobial drugs in critical illness, Chapter 55 Immunotherapy in critical illness, Chapter 57 Crystalloids in critical illness, Chapter 58 Diuretics in critical illness, Chapter 59 Airway management in cardiopulmonary resuscitation, Chapter 60 Artificial ventilation in cardiopulmonary resuscitation, Chapter 61 Pathophysiology and causes of cardiac arrest, Chapter 62 Cardiac massage and blood flow management during cardiac arrest, Chapter 63 Defibrillation and pacing during cardiac arrest, Chapter 64 Therapeutic strategies in managing cardiac arrest, Chapter 65 Post-cardiac arrest arrhythmias, Chapter 66 Management after resuscitation from cardiac arrest, Chapter 67 Ethical and end-of-life issues after cardiac arrest, Chapter 69 Choice of resuscitation fluid, Chapter 70 Therapeutic goals of fluid resuscitation, Chapter 71 Normal physiology of the respiratory system, Chapter 72 Blood gas analysis in the critically ill, Chapter 73 Pulse oximetry and capnography in the ICU, Chapter 74 Respiratory system compliance and resistance in the critically ill, Chapter 75 Gas exchange principles in the critically ill, Chapter 76 Gas exchange assessment in the critically ill, Chapter 77 Respiratory muscle function in the critically ill, Chapter 78 Imaging the respiratory system in the critically ill, Chapter 79 Upper airway obstruction in the critically ill, Chapter 80 Standard intubation in the ICU, Chapter 81 The difficult intubation in the ICU, Chapter 82 The surgical airway in the ICU, Chapter 83 Dyspnoea in the critically ill, Chapter 84 Pulmonary mechanical dysfunction in the critically ill, Chapter 85 Hypoxaemia in the critically ill, Chapter 86 Hypercapnia in the critically ill, Chapter 87 Cardiovascular interactions in respiratory failure, Chapter 88 Physiology of positive-pressure ventilation, Chapter 89 Respiratory support with continuous positive airways pressure, Chapter 90 Non-invasive positive-pressure ventilation, Chapter 91 Indications for mechanical ventilation, Chapter 92 Design and function of mechanical ventilators, Chapter 93 Setting rate, volume, and time in ventilatory support, Chapter 94 Respiratory support with positive end-expiratory pressure, Chapter 95 Volume-controlled mechanical ventilation, Chapter 96 Pressure-controlled mechanical ventilation, Chapter 98 High-frequency ventilation and oscillation, Chapter 100 Failure to ventilate in critical illness, Chapter 101 Ventilator trauma in the critically ill, Chapter 102 Assessment and technique of weaning, Chapter 103 Weaning failure in critical illness, Chapter 104 Extracorporeal respiratory and cardiac support techniques in the ICU, Chapter 105 Treating respiratory failure with extracorporeal support in the ICU, Chapter 106 Aspiration of gastric contents in the critically ill, Chapter 107 Inhalation injury in the ICU, Part 4.10 Acute respiratory distress syndrome, Chapter 108 Pathophysiology of acute respiratory distress syndrome, Chapter 109 Therapeutic strategy in acute respiratory distress syndrome, Chapter 110 Pathophysiology and causes of airflow limitation, Chapter 111 Therapeutic approach to bronchospasm and asthma, Chapter 112 Therapeutic strategy in acute or chronic airflow limitation, Part 4.12 Respiratory acidosis and alkalosis, Chapter 113 Pathophysiology and therapeutic strategy of respiratory acidosis, Chapter 114 Pathophysiology and therapeutic strategy of respiratory alkalosis, Chapter 115 Pathophysiology of pneumonia, Chapter 116 Diagnosis and management of community-acquired pneumonia, Chapter 117 Diagnosis and management of nosocomial pneumonia, Chapter 118 Diagnosis and management of atypical pneumonia, Part 4.14 Atelectasis and sputum retention, Chapter 119 Pathophysiology and prevention of sputum retention, Chapter 120 Lung recruitment techniques in the ICU, Chapter 121 Chest physiotherapy and tracheobronchial suction in the ICU, Chapter 122 Toilet bronchoscopy in the ICU, Chapter 123 Pathophysiology of pleural cavity disorders, Chapter 124 Management of pneumothorax and bronchial fistulae, Chapter 125 Management of pleural effusion and haemothorax, Chapter 126 Pathophysiology and causes of haemoptysis, Chapter 127 Therapeutic approach in haemoptysis, Chapter 128 Normal physiology of the cardiovascular system, Chapter 130 Arterial and venous cannulation in the ICU, Chapter 131 Blood pressure monitoring in the ICU, Chapter 132 Central venous pressure monitoring in the ICU, Chapter 133 Pulmonary artery catheterization in the ICU, Chapter 134 Mixed and central venous oxygen saturation monitoring in the ICU, Chapter 135 Right ventricular function in the ICU, Chapter 136 Cardiac output assessment in the ICU, Chapter 137 Oxygen transport in the critically ill, Chapter 138 Tissue perfusion monitoring in the ICU, Chapter 139 Lactate monitoring in the ICU, Chapter 140 Measurement of extravascular lung water in the ICU, Chapter 141 Doppler echocardiography in the ICU, Chapter 142 Monitoring the microcirculation in the ICU, Chapter 143 Imaging the cardiovascular system in the ICU, Part 5.3 Acute chest pain and coronary syndromes, Chapter 144 Causes and diagnosis of chest pain, Chapter 145 Pathophysiology of coronary syndromes, Chapter 146 Diagnosis and management of non-STEMI coronary syndromes, Chapter 147 Diagnosis and management of ST-elevation of myocardial infarction, Chapter 148 Pathophysiology, diagnosis, and management of aortic dissection, Chapter 150 Diagnosis and management of shock in the ICU, Chapter 151 Pathophysiology and causes of cardiac failure, Chapter 152 Therapeutic strategy in cardiac failure, Chapter 153 Intra-aortic balloon counterpulsation in the ICU, Chapter 154 Ventricular assist devices in the ICU, Chapter 155 Causes and diagnosis of tachyarrhythmias, Chapter 156 Therapeutic strategy in tachyarrhythmias, Chapter 157 Causes, diagnosis, and therapeutic strategy in bradyarrhythmias, Chapter 158 Causes and diagnosis of valvular problems, Chapter 159 Therapeutic strategy in valvular problems, Chapter 160 Pathophysiology and causes of endocarditis, Chapter 161 Prevention and treatment of endocarditis, Chapter 162 Pathophysiology and causes of severe hypertension, Chapter 163 Management of severe hypertension in the ICU, Chapter 164 Pathophysiology of severe capillary leak, Chapter 165 Management of acute non-cardiogenic pulmonary oedema, Chapter 166 Pathophysiology and causes of pericardial tamponade, Chapter 167 Management of pericardial tamponade, Chapter 168 Pathophysiology and causes of pulmonary hypertension, Chapter 169 Diagnosis and management of pulmonary hypertension, Chapter 170 Pathophysiology and causes of pulmonary embolism, Chapter 171 Diagnosis and management of pulmonary embolism, Chapter 172 Normal physiology of the gastrointestinal system, Chapter 173 Normal physiology of the hepatic system, Chapter 174 Imaging the abdomen in the critically ill, Chapter 175 Hepatic function in the critically ill, Chapter 176 Pathophysiology and causes of upper gastrointestinal haemorrhage, Chapter 177 Diagnosis and management of upper gastrointestinal haemorrhage in the critically ill, Chapter 178 Diagnosis and management of variceal bleeding in the critically ill, Chapter 179 Pathophysiology and causes of lower gastrointestinal haemorrhage, Chapter 180 Diagnosis and management of lower gastrointestinal haemorrhage in the critically ill, Chapter 181 Vomiting and large nasogastric aspirates in the critically ill, Chapter 182 Ileus and obstruction in the critically ill, Chapter 183 Diarrhoea and constipation in the critically ill, Chapter 184 Pathophysiology and management of raised intra-abdominal pressure in the critically ill, Chapter 185 Perforated viscus in the critically ill, Chapter 186 Ischaemic bowel in the critically ill, Chapter 187 Intra-abdominal sepsis in the critically ill, Chapter 188 Acute acalculous cholecystitis in the critically ill, Chapter 189 Management of the open abdomen and abdominal fistulae in the critically ill, Chapter 190 Pathophysiology, diagnosis, and assessment of acute pancreatitis, Chapter 191 Management of acute pancreatitis in the critically ill, Chapter 192 Pathophysiology and causes of jaundice in the critically ill, Chapter 193 Management of jaundice in the critically ill, Chapter 194 Pathophysiology and causes of acute hepatic failure, Chapter 195 Diagnosis and assessment of acute hepatic failure in the critically ill, Chapter 196 Management of acute hepatic failure in the critically ill, Chapter 197 The effect of acute hepatic failure on drug handling in the critically ill, Chapter 198 Extracorporeal liver support devices in the ICU, Part 6.9 Acute on chronic hepatic failure, Chapter 199 Pathophysiology, diagnosis, and assessment of acute or chronic hepatic failure, Chapter 200 Management of acute or chronic hepatic failure in the critically ill, Chapter 201 Normal physiology of nutrition, Chapter 202 The metabolic and nutritional response to critical illness, Chapter 203 Pathophysiology of nutritional failure in the critically ill, Chapter 204 Assessing nutritional status in the ICU, Chapter 205 Indirect calorimetry in the ICU, Chapter 206 Enteral nutrition in the ICU, Chapter 207 Parenteral nutrition in the ICU, Chapter 208 Normal physiology of the renal system, Part 8.2 Renal monitoring and risk prediction, Chapter 209 Monitoring renal function in the critically ill, Chapter 210 Imaging the urinary tract in the critically ill, Part 8.3 Oliguria and acute kidney injury, Chapter 211 Pathophysiology of oliguria and acute kidney injury, Chapter 212 Diagnosis of oliguria and acute kidney injury, Chapter 213 Management of oliguria and acute kidney injury in the critically ill, Chapter 214 Continuous haemofiltration techniques in the critically ill, Chapter 215 Haemodialysis in the critically ill, Chapter 216 Peritoneal dialysis in the critically ill, Chapter 217 The effect of renal failure on drug handling in critical illness, Chapter 218 The effect of chronic renal failure on critical illness, Chapter 219 Normal anatomy and physiology of the brain, Chapter 220 Normal anatomy and physiology of the spinal cord and peripheral nerves, Chapter 221 Electroencephalogram monitoring in the critically ill, Chapter 222 Cerebral blood flow and perfusion monitoring in the critically ill, Chapter 223 Intracranial pressure monitoring in the ICU, Chapter 224 Imaging the central nervous system in the critically ill, Chapter 225 Pathophysiology and therapeutic strategy for sleep disturbance in the ICU, Part 9.4 Agitation, confusion, and delirium, Chapter 226 Causes and epidemiology of agitation, confusion, and delirium in the ICU, Chapter 227 Assessment and therapeutic strategy for agitation, confusion, and delirium in the ICU, Chapter 228 Causes and diagnosis of unconsciousness, Chapter 229 Management of unconsciousness in the ICU, Chapter 230 Non-pharmacological neuroprotection in the ICU, Chapter 231 Pathophysiology and causes of seizures, Chapter 232 Assessment and management of seizures in the critically ill, Chapter 233 Causes and management of intracranial hypertension, Chapter 235 Diagnosis and assessment of stroke, Chapter 236 Management of ischaemic stroke, Chapter 237 Management of parenchymal haemorrhage, Part 9.9 Non-traumatic subarachnoid haemorrhage, Chapter 238 Epidemiology, diagnosis, and assessment on non-traumatic subarachnoid haemorrhage, Chapter 239 Management of non-traumatic subarachnoid haemorrhage in the critically ill, Chapter 240 Epidemiology, diagnosis, and assessment of meningitis and encephalitis, Chapter 241 Management of meningitis and encephalitis in the critically ill, Chapter 242 Pathophysiology, causes, and management of non-traumatic spinal injury, Chapter 243 Epidemiology, diagnosis, and assessment of neuromuscular syndromes, Chapter 244 Diagnosis, assessment, and management of myasthenia gravis and paramyasthenic syndromes, Chapter 245 Diagnosis, assessment, and management of tetanus, rabies, and botulism, Chapter 246 Diagnosis, assessment, and management of GuillainâBarré syndrome, Chapter 247 Diagnosis, assessment, and management of hyperthermic crises, Chapter 248 Diagnosis, assessment, and management of ICU-acquired weakness, Section 10 The metabolic and endocrine systems, Chapter 249 Normal physiology of the endocrine system, Chapter 250 Disorders of sodium in the critically ill, Chapter 251 Disorders of potassium in the critically ill, Chapter 252 Disorders of magnesium in the critically ill, Chapter 253 Disorders of calcium in the critically ill, Chapter 254 Disorders of phosphate in the critically ill, Part 10.3 Metabolic acidosis and alkalosis, Chapter 255 Pathophysiology and causes of metabolic acidosis in the critically ill, Chapter 256 Management of metabolic acidosis in the critically ill, Chapter 257 Pathophysiology, causes, and management of metabolic alkalosis in the critically ill, Chapter 258 Pathophysiology of glucose control, Chapter 259 Glycaemic control in critical illness, Chapter 260 Management of diabetic emergencies in the critically ill, Chapter 261 Pathophysiology and management of adrenal disorders in the critically ill, Chapter 262 Pathophysiology and management of pituitary disorders in the critically ill, Chapter 263 Pathophysiology and management of thyroid disorders in the critically ill, Chapter 264 Pathophysiology and management of functional endocrine tumours in the critically ill, Chapter 265 The blood cells and blood count, Chapter 267 Blood product therapy in the ICU, Chapter 269 Pathophysiology of disordered coagulation, Chapter 270 Disseminated intravascular coagulation in the critically ill, Chapter 271 Prevention and management of thrombosis in the critically ill, Chapter 272 Thrombocytopenia in the critically ill, Chapter 273 Pathophysiology and management of anaemia in the critically ill, Chapter 274 Pathophysiology and management of neutropenia in the critically ill, Chapter 275 Sickle crisis in the critically ill, Section 12 The skin and connective tissue, Part 12.1 Skin and connective tissue disorders, Chapter 276 Assessment and management of dermatological problems in the critically ill, Chapter 277 Vasculitis in the critically ill, Chapter 278 Rheumatoid arthritis in the critically ill, Part 12.2 Wound and pressure sore management, Chapter 279 Principles and prevention of pressure sores in the ICU, Chapter 280 Dressing techniques for wounds in the critically ill, Chapter 281 Microbiological surveillance in the critically ill, Chapter 282 Novel biomarkers of infection in the critically ill, Chapter 283 Definition, epidemiology, and general management of nosocomial infection, Chapter 284 Healthcare worker screening for nosocomial pathogens, Chapter 285 Environmental decontamination and isolation strategies in the ICU, Chapter 286 Antimicrobial selection policies in the ICU, Chapter 287 Oral, nasopharyngeal, and gut decontamination in the ICU, Chapter 288 Diagnosis, prevention, and treatment of device-related infection in the ICU, Chapter 289 Antibiotic resistance in the ICU, Part 13.3 Infection in the immunocompromised, Chapter 290 Drug-induced depression of immunity in the critically ill, Chapter 292 Diagnosis and management of malaria in the ICU, Chapter 293 Diagnosis and management of viral haemorrhagic fevers in the ICU, Chapter 294 Other tropical diseases in the ICU, Chapter 295 Assessment of sepsis in the critically ill, Chapter 296 Management of sepsis in the critically ill, Chapter 297 Pathophysiology of septic shock, Chapter 298 Management of septic shock in the critically ill, Chapter 299 Innate immunity and the inflammatory cascade, Chapter 300 Brain injury biomarkers in the critically ill, Chapter 301 Cardiac injury biomarkers in the critically ill, Chapter 302 Renal injury biomarkers in the critically ill, Chapter 303 The host response to infection in the critically ill, Chapter 304 The host response to trauma and burns in the critically ill, Chapter 305 The host response to hypoxia in the critically ill, Chapter 306 Hostâpathogen interactions in the critically ill, Chapter 307 Coagulation and the endothelium in acute injury in the critically ill, Chapter 308 Ischaemia-reperfusion injury in the critically ill, Chapter 309 Repair and recovery mechanisms following critical illness, Chapter 310 Neural and endocrine function in the immune response to critical illness, Chapter 311 Adaptive immunity in critical illness, Chapter 312 Immunomodulation strategies in the critically ill, Chapter 313 Immunoparesis in the critically ill, Chapter 314 Pathophysiology and management of anaphylaxis in the critically ill, Chapter 315 Role of toxicology assessment in poisoning, Chapter 316 Decontamination and enhanced elimination of poisons, Part 15.2 Management of specific poisons, Chapter 317 Management of salicylate poisoning, Chapter 318 Management of acetaminophen (paracetamol) poisoning, Chapter 319 Management of opioid poisoning, Chapter 320 Management of benzodiazepine poisoning, Chapter 321 Management of tricyclic antidepressant poisoning, Chapter 322 Management of poisoning by amphetamine or ecstasy, Chapter 323 Management of digoxin poisoning, Chapter 324 Management of cocaine poisoning, Chapter 326 Management of cyanide poisoning, Chapter 327 Management of alcohol poisoning, Chapter 328 Management of carbon monoxide poisoning, Chapter 329 Management of corrosive poisoning, Chapter 330 Management of pesticide and agricultural chemical poisoning, Chapter 331 Management of radiation poisoning, Chapter 332 A systematic approach to the injured patient, Chapter 333 Pathophysiology and management of thoracic injury, Chapter 334 Pathophysiology and management of abdominal injury, Chapter 335 Management of vascular injuries, Chapter 336 Management of limb and pelvic injuries, Chapter 337 Assessment and management of fat embolism, Chapter 338 Assessment and management of combat trauma, Chapter 339 Pathophysiology of ballistic trauma, Chapter 340 Assessment and management of ballistic trauma, Chapter 341 Epidemiology and pathophysiology of traumatic brain injury, Chapter 342 Assessment of traumatic brain injury, Chapter 343 Management of traumatic brain injury, Chapter 344 Assessment and immediate management of spinal cord injury, Chapter 345 Ongoing management of the tetraplegic patient in the ICU, Chapter 346 Pathophysiology and assessment of burns, Chapter 347 Management of burns in the ICU, Chapter 348 Pathophysiology and management of drowning, Chapter 349 Pathophysiology and management of electrocution, Part 17.3 Altitude- and depth-related disorders, Chapter 350 Pathophysiology and management of altitude-related disorders, Chapter 351 Pathophysiology and management of depth-related disorders, Chapter 352 Pathophysiology and management of fever, Chapter 353 Pathophysiology and management of hyperthermia, Chapter 354 Pathophysiology and management of hypothermia, Chapter 355 Pathophysiology and management of rhabdomyolysis, Chapter 356 Pathophysiology and assessment of pain, Chapter 357 Pain management in the critically ill, Chapter 358 Sedation assessment in the critically ill, Chapter 359 Management of sedation in the critically ill, Section 19 General surgical and obstetric intensive care, Part 19.1 Optimization strategies for the high-risk surgical patient, Chapter 360 Identification of the high-risk surgical patient, Chapter 361 Peri-operative optimization of the high risk surgical patient, Part 19.2 General post-operative intensive care, Chapter 362 Post-operative ventilatory dysfunction management in the ICU, Chapter 363 Post-operative fluid and circulatory management in the ICU, Chapter 364 Enhanced surgical recovery programmes in the ICU, Chapter 365 Obstetric physiology and special considerations in ICU, Chapter 366 Pathophysiology and management of pre-eclampsia, eclampsia, and HELLP syndrome, Chapter 367 Obstetric Disorders in the ICU, Part 20.1 Specialized surgical intensive care, Chapter 368 Intensive care management after cardiothoracic surgery, Chapter 369 Intensive care management after neurosurgery, Chapter 370 Intensive care management after vascular surgery, Chapter 371 Intensive care management in hepatic and other abdominal organ transplantation, Chapter 372 Intensive care management in cardiac transplantation, Chapter 373 Intensive care management in lung transplantation, Chapter 374 ICU selection and outcome of patients with haematological malignancy, Chapter 375 Management of the bone marrow transplant recipient in ICU, Chapter 376 Management of oncological complications in the ICU, Section 21 Recovery from critical illness, Part 21.1 In-hospital recovery from critical illness, Chapter 378 Promoting physical recovery in critical illness, Chapter 379 Promoting renal recovery in critical illness, Chapter 380 Recovering from critical illness in hospital, Part 21.2 Complications of critical illness, Chapter 381 Physical consequences of critical illness, Chapter 382 Neurocognitive impairment after critical illness, Chapter 383 Affective and mood disorders after critical illness, Part 21.3 Out-of-hospital support after critical illness, Chapter 384 Long-term weaning centres in critical care, Chapter 386 Rehabilitation from critical illness after hospital discharge, Part 22.1 Withdrawing and withholding treatment, Chapter 387 Ethical decision making in withdrawing and withholding treatment, Chapter 388 Management of the dying patient, Part 22.2 Management of the potential organ donor, Chapter 389 Beating heart organ donation, Chapter 390 Non-heart-beating organ donation, Chapter 391 Post-mortem examination in the ICU.
Top Symbols And Trademarks Of The World, Teeth Whitening Madison, Al, Stages Of Change Group Activities, 3 Bedroom Ranch Homes For Sale, 10 Rights Students Should Have At School, Rent Dance Studios Near Me, Villa Nova Ready Made Curtains, Primanti Brothers Original, The Florida Office Of Financial Regulation Requires That Quizlet,
